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The dynamics of a high-revolution compressor where each of the mountings is formed by two single-row 

ball bearings pressed into a common housing and considered. Springs with a rated force are set up hetwcen 

the housing and the body. Relations are obtained between the mass characteristics of the housings, the 

coefficients of rigidity of the elastic mountings and the frequency of rotation of the compressor for which the 

dynamic pressures on the mountings of an unbalanced rotating compressor vanish. Formulas arc obtained 

which &fine the first two critical frequencies of rotation of a comprcsaor in elastic mountings. 

As rtrk frequency of rotation increases, the operating life of ball bearings when they are rigidly installed in the 
framework falls sharply since the pressure between the balls of a bearing and its external ring increases in 
proportion to the square of the angular velocity of rotation. According to the theory which is presented in 
courses in theoretical mechanics [l-3]. in order the reduce the pressure on the mountings, it is necessary to 
reduce the static and instantaneous imbalance of the rotating solid to zero. A whole branch of technology. that 
is balancing technology, has been set up for this purpose. However. in practice. as a consequence of 

deformation, the reaction of ball bearings. starting from a rather low value of the eccentricity and angle which 
characterizes the instantaneous imbalance. continues to increase sharply at high values of the frequency of 
rotation, which also leads to the destruction of the bearings in spite of very careful balancing [4]. 

The installation of elastic mountings [S] between the external ring of a bearing and its housing became an 
alternative when designing efficient high-revolution machines mounted on ball bearings. However, their 
premature breakdown is observed when the rotor is installed in single-row ball bearings due to the 
misalignment of the cage with respect to the external ring of the bearing. It is shown below that, when 

mountings consisting of two single row ball-bearings pressed into a common housing which is mounted 
elastically in the body are used, all the advantages of a shaft in elastic mountings are preserved and there is no 
skewing of the cage. 

t Prikl. Mut. Mekh. Vol. 56, No. 2, pp. 331-335, 1992 
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FIG. I. 

1. BASIC EQUATIONS 

(1.1) 

Let us consider an eight-stage compressor which is rotating in a pair of double elastic mountings. The double 
left-hand mounting is formed by two ball bearings which have been pressed into a common housing fixed to the 
framework by means of two rings with rigidities cs and c4 (Fig. 1). The right-hand pair of mountings is formed in 
a similar manner and the rigidities of its springs are denoted by c5 and c h. We consider the compressor as a rigid 

horizontal shaft which is rotating in two elastic mountings with rigidities c, = cs + c4 and cz = cs + c6 with a 
centre of mass which is denoted by C. Equivalent elastic mountings are located at points P and H. The 
equations for the small forced vibrations of such a shaft, which are caused by the static and instantaneous 
imbalance are 

Ao(y,‘-y,‘)-B(zz”-zl”) +c,zi1i1-c2zzlzZ=-v sin(ot-e) 

Ao(zz’-zr’) +B(yr”-y~“)-c~y,l*l+c,y*l,l=vcos(of-c) 

k=Yelo*, v= (B-A) lo28 

Here, we have adopted the notation: M is the mass of the compressor, y, and zr are the coordinates of an 
equivalent compressor mounting located at the point P and the x axis coincides at the equilibrium position with 

the axis of symmetry of the compressor, y2 and zz are the coordinates of the second equivalent compressor 
mounting located at point H, I, and l2 are the distances from the centre of mass to the mountings located at 
points P and H, 1 is the distance between the compressor mountings, c, and cz are the rigidities of the elastic 
mountings located at points P and H, A is the moment of inertia of the compressor with respect to the axis of 
symmetry, B is the moment of inertia of the compressor with respect to any axis perpendicular to the axis of 
symmetry of the compressor and passing through the centre of mass, w is the constant angular velocity of 
rotation of the compressor, e is the eccentricity of the compressor, 6 is the angle of deviation of the principal 
central axis of inertia from the geometrical axis of the compressor and E is the angle between the planes passing 
through the geometrical axis of the compressor and through the centre of mass and the angle 6 respectively. 

The first two equations of system (1.1) are the differential equations of the motion of the centre of mass. The 

second two equations of (1.1) are written in accordance with the theorem of moments regarding translationally 
moving axes, the origin of which coincides with the centre of mass. 

Equations (1.1) hold when there is a small degree of imbalance of the rotor, that is, they must satisfy the 
relations 

&X1, cl-‘<<I, (y~-y,)l-‘-(;*-r,)l-‘4~el-’ 

which are always satisfied when there is current balancing. 
The particular solution of system (1. l), which determines the forced vibrations of the compressor, has the 

form: 
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Here. 

(1.2) 

(1.3) 

2. EQUATIONS OF MOTION OF THE HOUSING 

Let us write the equations of motion of the housing into which the two left-hand mountings are pressed 

(2.1) 

I(U‘~*-u3~~ )I,-‘=---R,,d,+R,,d2+c~ujd,-c,rr,d~; u=y, z 

Here, m is the mass of the housing together with the non-rotating parts of the bearings, I is the moment of 
inertia of the housing with the non-rotating parts of the bearings with respect to the horizontal axes y and z 
drawn through the centre of mass of the housing (I = I? = I;), I,+ are the coordinates of the compressor 

mounting located at point N, uj are the coordinates of the compressor mounting located at point D, d, and d2 

are the distances from the centre of mass to the mountings located at points N and D, 1, is the distance between 
the compressor mountings. Rlr3 and R,,4 are the reactions on the housing as viewed from the spindle and cj and 
c, are the coefficients of rigidity of the elastic mountings located at points N and D (Fig. 2). 

By putting 

y3=(l+lf)l--‘n,COS(6~!-~)--Ill-‘A:!cos(ot-~) 
(2.2) 

y,=(l-f,)f--‘A, cos(c~lt--~)+1,1--‘A*cos(cllt--~) 

(/s and l4 are the distances from the mountings located at the point P to the mountings located at points N and 
0) and solving the equations following from (2.1) jointly for the unknowns Ry3 and Ry4, we find that Ry3 = 0 
and RY4 = 0 for an arbitrary value of t if the following equalities are satisfied: 

/I(!. ~).=1,(0, w)=O, Jz(1, Q)-J~(O, (I))-0 
(2.3) 
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By simultaneously solving Eqs (2.3), we find three conditions and, when these conditions are observed, the 
two reactions between the compressor and the housing vanish when there is static and dynamic imbalance 

c.:d,=X&* m=(c,+t,)o--*. f=(Ct+C&)d*ffzo-* (2.4) 

On treating the two right-hand mountings in the same manner, we arrive at similar conditions for the 
reactions between the compressor and the housing to be equal to zero when there is static and dynamic 
imbalance on replacing c,, c4, d, and d2 in (2.4) by es, c6, d3 and da, respectively, where d? and d4 are the 
distances from the centre of mass to the mountings Iocated at points E and G, and cs and ch are the rigidities of 
the elastic mountings located at points E and G. 

3. CRITICAL FREQUENCIES OF ROTATION 

According to Eqs (1.3), the amplitudes of the forced vibrations caused by static and dynamic imbalance 
increase without limit when f(w) = 0. By solving this biquadratic equation, we find that 

“*,2=[L;f(U~-2WC,c*/*)“~l”~W-“~ 

(3.1) 
u=(cl+c*) (E-A) +M(e,i*~+c*f**), v=21V(B-A) 

The critical frequencies of rotation of the compressor in the two elastic mountings, when there are forced 
vibrations caused by the static and dynamic imbalance of the compressor, are determined by this formula. 

4. SELF-CENTRING OF THE COMPRESSOR 

Let us now consider the forced vibrations of the compressor when there is an unbounded increase in the 
frequency of rotation. From Eq. (1.3), we find the limiting values of the constants a,, b2, a2 and bZ when o-+ m 
and, then, the limiting values of the coordinates from Eqs (1.2) 

Em yk= -e cos ot- (-i)rtJ3 cos(ol--e) 
0-m 

hm zk= -e sin ot-(--1)‘ik~sin(ol--e); 
(4.1) 

k=f, 2 
u-do 

If the coordinates of the point of the geometric axis of the compressor lying at the intersection of this axis 
with a plane normal to the axis of rotation and passing through the centre of mass is denoted by (y, z), then the 
coordinates of the centre of mass are 

y,=y+e COS Wl= (y&+y&)l-r+e co9 6rt 

zc=z+esin Cot=(2~22+~~l~)l-~+e sin ot 
(4.2) 

The angles which are formed by the principal central axis of inertia and the coordinates of the xz and xy 
planes are 

~=(y2-y~)l-‘+~cos(oI-e), r=(zz-z,)I-‘-l-~sin(ot-e) (4.3) 

On substituting the resulting limiting values of the coordinates into Eqs (4.2) and (4.3), which determine the 
coordinates of the centre of mass of the compressor and the angle of deviation of the principal axis of inertia 
from the geometrical axis of the compressor, we find 

lim y,=lim z,=lim fi=lim ‘j=O as 0+ m 

Hence, as the angular rate of rotation increases, the axis of rotation of the compressor tends to coincide with 
the principal central axis of inertia. 

Consequently, when there is an unlimited increase jn the angular velocity of the compressor, the static and 
dynamic imbalance of the compressor tends to zero, that is, the compressor is self-centring. 
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5. EXPERIMENT AND CONCLUSIONS 

As experiment confirms, it is necessary to choose the rigidities of the equivalent elastic mountings et and cz 
by determining the optimal value of the first and second critical frequencies of rotation. Experiment confirms 
that it is advisable to set the second critical frequency of rotation below the range of operational frequencies of 
rotation by 1~2~0 r.p.m. 

In the compressor being considered and in a range of operation frequencies of rotation from 25000 to 45000 
r.p.m., the rigidities were Ci = 0.319 x IO” N/cm and c2 = 1.07 x 10’ N/cm. The calcuiated critical frequencies 
of rotation n, = 11600 r.p.m. and n2 = 23900 r.p.m. are in good agreement with experimental data. In this 
case, the compressor was treated as a flexible body. The effect of self-centring, which has been proved when 
there is an unlimited increase in the frequency of rotation, developed at 1000-2000 r.p.m. after passing through 
the second critical frequency of rotation. For instance, at 25000 r.p.m., the amplitude of the vibrations was 
reduced to 4um, which completely satisfies the operational requirements. On passing through the critical 
frequencies the excess vibrational load did not exceed 15g, which satisfies the requirements of strength and 
comfort while, when the ball bearings were rigidly fixed into the framework, the excess vibrational load at the 
critical frequencies of rotation reached a value of 12Og, which is not permissible 

The compressor can be treated as an absolutely solid body over the whole range of frequencies. In order to 
do this, it is sufficient to select the pliability of the elastic mountings to be S-10 times greater than the pliability 
of the doubly mounted rotor at its centre of mass, which is treated as a beam freely lying on two rigid 
mountings. 

There is no need to introduce artificial dampers since they do not improve the rotor dynamics and reduce the 
efficiency. A reduction in the amplitudes and the excess vibrational load on passing through the critical 
frequencies is achieved by reducing the rigidity when installing the compressor into the elastic mountings. 
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